
VERS:17-01-2023

DIVISORI DI FLUSSO "SERIE RV"

Il divisore di flusso è costituito da due o più elementi (sezioni) modulari ad ingranaggi collegati meccanicamente da un albero interno che li fa ruotare alla stessa velocità.

A differenza delle pompe multiple in cui la potenza d'ingresso è meccanica (albero collegato a un motore), nel divisore di flusso la potenza d'ingresso è fluidodinamica costituita da un flusso d'olio in pressione che alimenta in parallelo gli elementi modulari che a loro volta sono collegati ai circuiti idraulici di alimentazione degli utilizzatori. La frazione di flusso utilizzata da ciascun elemento è determinata unicamente dalla sua portata nominale, quindi, a differenza dei comuni divisori statici a luci variabili, i divisori di flusso non sono dissipativi e di conseguenza sono anche molto più precisi.

L'impiego di divisori di flusso in un impianto, riduce il numero di pompe necessarie e delle relative singole prese di forza meccaniche o di complessi accoppiatori meccanici (con aumento delle perdite).

Trascurando al momento le piccole perdite, la potenza d'ingresso è uguale in ogni momento alla somma delle potenze erogate da tutti gli elementi del divisore di flusso.

Perciò se in un intervallo di tempo la potenza richiesta da un circuito idraulico è nulla (circuito inattivo a scarico), la potenza erogata dall'elemento che alimenta quel circuito, si rende disponibile per gli altri elementi che possono utilizzarla nei propri circuiti, funzionando a pressioni anche più elevate di quella in entrata.

Applicazioni più frequenti del divisore di flusso

•Alimentazione di due o più circuiti idraulici indipendenti mediante una pompa unica avente la portata uguale alla somma delle portate.

Esempi di applicazioni:

- -piattaforme e ponti di sollevamento
- -cesoie e presse piegatrici idrauliche
- -sollevamento container scarrabili
- -impianti di lubrificazione
- -aperture / chiusure idrauliche di paratie
- -macchine automatiche con azionamenti idraulici
- -azionamento casseforme per edilizia
- -macchine per la lavorazione del legno
- -traslazione di carrelli azionati da motori o cilindri idraulici
- -impianti industrie alimentari
- -impianti militari.

Amplificatori di pressione.

Quando in un impianto idraulico un utilizzatore richiede una pressione di esercizio o di punta molto più alta di tutti gli altri, per alimentarlo è conveniente utilizzare un divisore di flusso piuttosto che ridimensionare tutto l'impianto per una pressione più elevata.

Con un divisore di flusso a due elementi, mandando a scarico l'uscita di un elemento, la pressione nell'altro è molto più alta di guella della pompa che alimenta l'impianto.

Esempi di applicazioni:

- -presse con avvicinamento rapido
- -macchine utensili

Caratteristiche Costruttive

CORPO DIVISORE PIASTRE COPERCHI	Profilato estruso Lega Serie 7000 trattato termicamente, e anodizzato	Rp=345 N/mm ² (Carico di snervamento) Rm=382 N/mm ² (Carico di rottura)
BOCCOLE DI SUPPORTO INGRANAGGI	Lega speciale allo stagno, trattato termicamente con elevate caratteristiche meccaniche e forte potere antifrizione.Boccole autolubrificanti DU	Rp=350 N/mm ² (Carico di snervamento) Rm=390 N/mm ² (Carico di rottura)
INGRANAGGI	Acciaio UNI 7846	Rs=980 N/mm ² (Carico di snervamento) Rm=1270÷1570 N/mm ² (Carico di rottura)
GUARNIZIONI	A 727 Acrolonitrile Standard F 975 Viton FKM	90 Shore, resistenza termica 120°C 80 Shore, resistenza termica 200°C

DESCRIZIONE MODELLI

RV-D

DIVISORE DI FLUSSO

Questo modello è la versione standard dei divisori di flusso, divide semplicemente il flusso di ingresso senza permettere la correzione d'errore

RV-S

DIVISORE DI FLUSSO con singola valvola di rifasamento

Questo modello ha una sola valvola di rifasamento comune a tutti gli elementi, oltre ovviamente a dividere il flusso, ne permette la correzione di errore ma solo nel senso di divisione del flusso.

RV-V

DIVISORE DI FLUSSO con valvole di rifasamento ed anticavitazione

Questo modello il divisore RV-V ha una valvola di rifasamento ed una di anticavitazione per ogni singolo elemento, che gli permette di correggere l'errore sia nel senso di divisione del flusso sia nel senso di riunificazione del flusso. Inoltre si ha la possibilità di tarare le valvole a pressioni diverse per ogni singolo elemento

RV-G

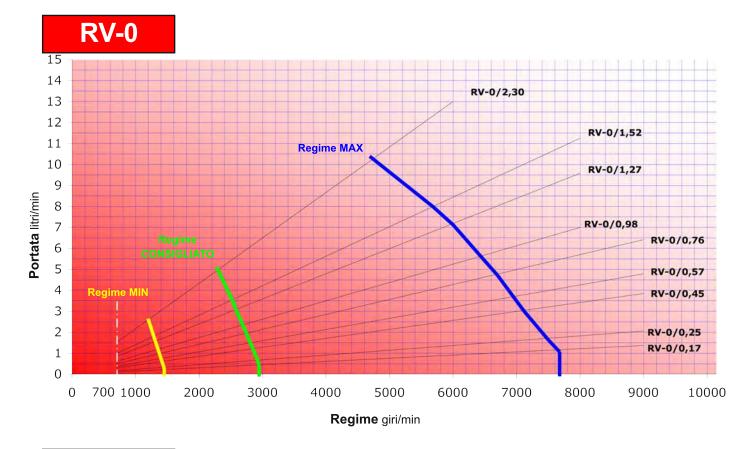
DIVISORE DI FLUSSO + MOTORE

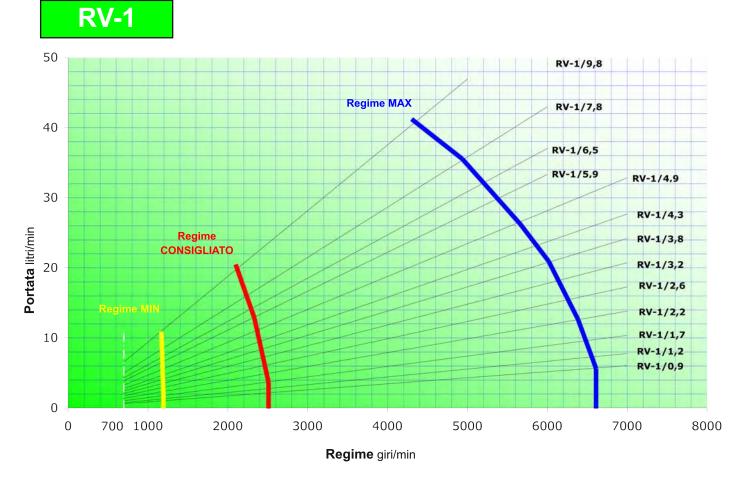
il divisore RV-G è la versione con motore del divisore RV-D. Ha la particolarità di avere un elemento motore collegato agli elementi divisore.

Si utilizza questa tipologia di soluzione nei casi in cui la pressione di ingresso e/o uscita del divisore è sotto la pressione minima di avvio, alimentando il motore si permette l'avvio del divisore. un classico utilizzo è negli impianti con martinetti idraulici a singolo effetto

RV-H

DIVISORE DI FLUSSO con singola valvola di rifasamento + MOTORE


Questo modello è la versione con motore del divisore RV-S. il motore copre la stessa funzione che svolge nel divisore RV-G


RV-N

DIVISORE DI FLUSSO con valvole di rifasamento ed anticavitazione + MOTORE

Questo modello è la versione con motore del divisore RV-V. il motore copre la stessa funzione che svolge nel divisore RV-G

L'errore di divisione è inferiore al ± 1.5% con una differenza di pressione tra gli elementi fino a 30 Bar. Per differenze maggiori si approssima un aumento dell'errore del 1% per ogni 10 bar di contropressione in più.

NOTA: il divisore può lavorare anche sotto il regime minimo ma il suo rendimento sarà inferiore il divisore può lavorare sopra il regime massimo ma avrà un aumento della rumorosità e delle perdite di carico

RV-0D

Divisore di Flusso (modello Base)

Codice:

9RD NN CC

9RD	Tipo Divisore
NN	Numero di Elementi
CC	Codice della cilindrata degli elementi

Esempio: Divisore a 2 elementi con cilindrate uguali:

RV-0D / 0,57 x 2 **9RD 02 05**

Esempio: Divisore a 4 elementi con cilindrate diverse (max 7):

RV-0D / 0,57+0,76+0,98+1,52

9RD 04 05 06 07 11

NOTA: per codificare divisori con cilindrate diverse a più di 7 elementi occorre interpellare il Ns. ufficio vendite.

	Tabella: 1										
Cilindrata	CC	Pressione	1/111111								
Cm ³ /giro	Codice	max bar	MIN	CONSIGLIATA	MAX						
0,17	01	210	0,2	0,4	1,2						
0,25	02	210	0,3	0,7	1,8						
0,45	04	210	0,6	1,2	3						
0.57	05	210	0,8	1,5	3,8						
0,76	06	210	1	2	4,8						
0,98	07	210	1,2	2,3	5,6						
1,27	09	210	1,5	3	7,2						
1,52	11	210	1,9	3,5	8						
2,30	13	210	2,6	5	10,3						

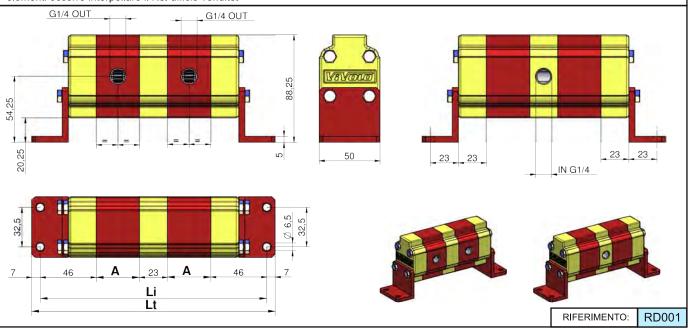


Tabella: 2

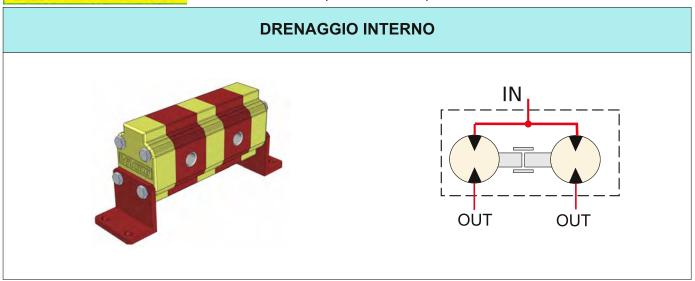

Li = Interasse fori di fissaggio (divisore con cilindrate uguali) Numero di elementi Cm³/giro Α 7 3 5 6 8 10 11 12 13 14 15 16 0,17 29,3 644,3 748,9 173,6 225,9 278,2 330,5 382,8 435,1 487,4 539,7 592 696,6 801,2 853,5 905,8 703,8 756,7 0,25 29,9 174,8 227,7 280,6 333,5 386,4 439,3 492,5 545,1 598 650,9 809,6 862,5 915,4 0,45 31,5 178 232,5 287 341,5 396 450,5 505 559,5 614 668,5 723 777,5 832 886,5 941 32,5 180 235,5 291 346,5 402 457,5 513 568,5 624 679,5 735 790,5 846 901,5 957 0,57 0.76 34 183 240 297 354 411 468 525 582 639 696 753 810 867 924 981 0,98 35,5 186 244,5 303 361,5 420 478,5 537 595,5 654 712,5 771 829,5 888 946,5 1005 1,27 38 191 252 313 374 435 496 557 618 679 740 801 862 923 984 1045 1,52 40 195 258 321 384 447 510 573 636 699 762 825 888 951 1014 1077 2,30 46 207 276 345 414 483 552 621 690 759 828 897 966 1035 1104 1173

Tabella: 3 In questa tabella sono indicati il numero di ingressi del divisore in funzione del numero di elementi

Numero di elementi	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Numero di ingressi	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

Divisore di Flusso (modello Base)

Nella tabella 1 è indicato il campo di funzionamento dei singoli elementi divisore.

Più è alta la portata (q) di alimentazione, maggiore è la precisione di divisione del flusso, ma di contro si hanno perdite di carico e rumorosità più elevata. Pertanto consigliamo di alimentare gli elementi con portate uguali o di poco superiori a quelle indicate nella colonna "CONSIGLIATA".

Ricordarsi di verificare le portate anche in fase di riunificazione del flusso.

Le pressioni indicate sono da considerarsi massime di funzionamento, il divisore può supportare picchi di pressione superiori del 20%.

Come calcolare le misure "Li" e "Lt" del divisore:

Dalla tabella 2 ricavare le misura "Li" per i divisori fino a 16 elementi con cilindrate uguali; per i divisori con elementi diversi o con più di 16 elementi le misura "Li" e "Lt" si calcolano con le seguenti formule:

Li =
$$[(n-1) \times 23] + 92 + (A1 + A2 + A3 +)$$
 92 = 46 + 46

n = Numero di elementi del divisore

A1... An = altezze elementi divisore

ESEMPIO: Per ottenere le misure Li e Lt di un divisore a tre elementi (n=3), del tipo RV-0D 0,98 + 0,76 +1,27

 $Li = [(3-1) \times 23] + 92 + 35,5 + 34 + 38 = 245,5 \text{ mm}$ Interasse fori di fissaggio

Lt = 245,5 + 14 = 259,5Lunghezza di ingombro totale

Nella tabella 3 sono indicati il numero di ingressi in funzione del numero di elementi Gli ingressi del divisore sono tutti comunicanti ed è possibile utilizzarne anche uno solo tappando gli altri. Consigliamo di sfruttare almeno 1 ingresso ogni 15 I/min di portata

Per ottenere errori di divisione inferiori al 3% non si devono avere differenze di pressioni tra gli elementi superiori a 30 bar. Per ottenere precisioni elevate è importante anche il rispetto dei seguenti parametri:

Temperatura ambiente: -10°c ÷ +60°c Temperatura olio: +30°c ÷ +60°c

Olio idraulico a base minerale hlp, hv (din 51524) Viscosità olio 20 ÷ 40 cSt

RV-0S

Divisore di Flusso con valvola singola di rifasamento comune a tutti gli elementi

Codice:

9RS NN M CC

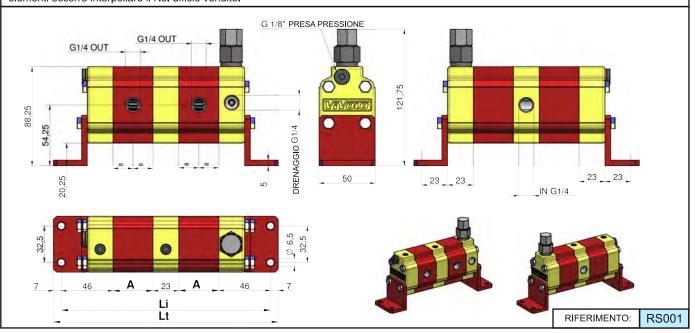
9RD	Tipo Divisore
NN	Numero di Elementi
М	Codice campo taratura valvola
CC	Codice della cilindrata degli elementi

TABELLA "M"

D 20 ÷ 140 bar

E 70÷ 315 bar

Esempio: Divisore a 2 elementi con cilindrate uguali: RV-0D / 0,57 x 2 CON VALVOLA 20 ÷ 140 bar


9RS 02 D 05

Esempio: Divisore a 4 elementi con cilindrate diverse (max 7):

RV-03	5/0,5/+0	1,76+0,98	+1,52 001	n valvoi	LA /U ÷ 3	ib bar
9RS	04	E	05	06	07	11

NOTA: per codificare divisori con cilindrate diverse a più di 7 elementi occorre interpellare il Ns. ufficio vendite.

Tabella: 1										
Cilindrata	СС	Pressione	Portata di un elemento I/min							
Cm ³ /giro	Codice	max bar	MIN	CONSIGLIATA	MAX					
0,17	01	210	0,2	0,4	1,2					
0,25	02	210	0,3	0,7	1,8					
0,45	04	210	0,6	1,2	3					
0.57	05	210	0,8	1,5	3,8					
0,76	06	210	1	2	4,8					
0,98	07	210	1,2	2,3	5,6					
1,27	09	210	1,5	3	7,2					
1,52	11	210	1,9	3,5	8					
2,30	13	210	2,6	5	10,3					

Tabella: 2

Li = Interasse fori di fissaggio (divisore con cilindrate uguali)

Cm ³ /giro	A
0,17	29,3
0,25	29,9
0,45	31,5
0,57	32,5
0,76	34
0,98	35,5
1,27	38
1,52	40
2,30	46

	El - Interasse for al history (avisore con diminate again)													
	Numero di elementi													
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
173,6	225,9	278,2	330,5	382,8	435,1	487,4	539,7	592	644,3	696,6	748,9	801,2	853,5	905,8
174,8	227,7	280,6	333,5	386,4	439,3	492,5	545,1	598	650,9	703,8	756,7	809,6	862,5	915,4
178	232,5	287	341,5	396	450,5	505	559,5	614	668,5	723	777,5	832	886,5	941
180	235,5	291	346,5	402	457,5	513	568,5	624	679,5	735	790,5	846	901,5	957
183	240	297	354	411	468	525	582	639	696	753	810	867	924	981
186	244,5	303	361,5	420	478,5	537	595,5	654	712,5	771	829,5	888	946,5	1005
191	252	313	374	435	496	557	618	679	740	801	862	923	984	1045
195	258	321	384	447	510	573	636	699	762	825	888	951	1014	1077
207	276	345	414	483	552	621	690	759	828	897	966	1035	1104	1173

Tabella: 3 In questa tabella sono indicati il numero di ingressi del divisore in funzione del numero di elementi

Numero di elementi	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Numero di ingressi	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

Divisore di Flusso con valvola singola di rifasamento comune a tutti gli elementi

DRENAGGIO ESTERNO PREDISPOSIZIONE STANDARD DI FABBRICA	DRENAGGIO INTERNO
Collegare il foro drenaggio (T) al serbatoio	Per predisporre il divisore al drenaggio interno eseguire le seguenti operazioni: 1. Smontare il grano M6 alloggiato all'interno del foro di drenaggio 2. Con un tappo da 1/4 G tappare il foro di drenaggio (T)
OUT OUT TOIL	M _G 1/8"

Nella tabella 1 è indicato il campo di funzionamento dei singoli elementi divisore.

Più è alta la portata (q) di alimentazione, maggiore è la precisione di divisione del flusso, ma di contro si hanno perdite di carico e rumorosità più elevata. Pertanto consigliamo di alimentare gli elementi con portate uguali o di poco superiori a quelle indicate nella colonna "CONSIGLIATA".

Ricordarsi di verificare le portate anche in fase di riunificazione del flusso.

Le pressioni indicate sono da considerarsi massime di funzionamento, il divisore può supportare picchi di pressione superiori del 20%.

Come calcolare le misure "Li" e "Lt" del divisore:

Dalla tabella 2 ricavare le misura "Li" per i divisori fino a 16 elementi con cilindrate uguali; per i divisori con elementi diversi o con più di 16 elementi le misura "Li" e "Lt" si calcolano con le seguenti formule:

Li =
$$[(n-1) \times 23] + 92 + (A1 + A2 + A3 +)$$
 92 = 46 + 46

n = Numero di elementi del divisore

A1... An = altezze elementi divisore

ESEMPIO: Per ottenere le misure Li e Lt di un divisore a tre elementi (n=3), del tipo RV-0S 0,98 + 0,76 +1,27

Interasse fori di fissaggio $Li = [(3-1) \times 23] + 92 + 35,5 + 34 + 38 = 245,5 \text{ mm}$

Lt = 245,5 + 14 = 259,5 Lunghezza di ingombro totale

Nella tabella 3 sono indicati il numero di ingressi in funzione del numero di elementi Gli ingressi del divisore sono tutti comunicanti ed è possibile utilizzarne anche uno solo tappando gli altri. Consigliamo di sfruttare almeno 1 ingresso ogni 15 I/min di portata

Per ottenere errori di divisione inferiori al 3% non si devono avere differenze di pressioni tra gli elementi superiori a 30 bar. Per ottenere precisioni elevate è importante anche il rispetto dei seguenti parametri:

Temperatura ambiente: -10°c ÷ +60°c Temperatura olio: +30°c ÷ +60°c

Viscosità olio 20 ÷ 40 cSt Olio idraulico a base minerale hlp, hv (din 51524)

Codice:

9RV NN CC M

	9RV	Tipo Divisore
l	NN	Numero di Elementi
	М	Codice campo taratura valvola
	CC	Codice della cilindrata degli elementi

	TABELLA "M"
Α	7÷ 70 bar
В	35÷ 175 bar
С	70÷ 350 bar

Esempio: Divisore a 2 elementi con cilindrate uguali: RV-0V / 0,57 x 2 CON VALVOLA 7 ÷ 70 bar

9RV 02

Esempio: Divisore a 4 elementi con cilindrate diverse (max 7):

RV-0V / 0,57+0,76+0,98+1,52 CON VALVOLA 35 ÷ 175 bar

9RV 04

NOTA: per codificare divisori con cilindrate diverse a più di 7 elementi occorre interpellare il Ns. ufficio vendite.

		Tabe	lla: 1							
Cilindrata	CC	Pressione	Portata di un elemento I/min							
Cm ³ /giro	Codice	max bar	MIN	CONSIGLIATA	MAX					
0,17	01	210	0,2	0,4	1,2					
0,25	02	210	0,3	0,7	1,8					
0,45	04	210	0,6	1,2	3					
0.57	05	210	0,8	1,5	3,8					
0,76	06	210	1	2	4,8					
0,98	07	210	1,2	2,3	5,6					
1,27	09	210	1,5	3	7,2					
1,52	11	210	1,9	3,5	8					
2,30	13	210	2,6	5	10,3					

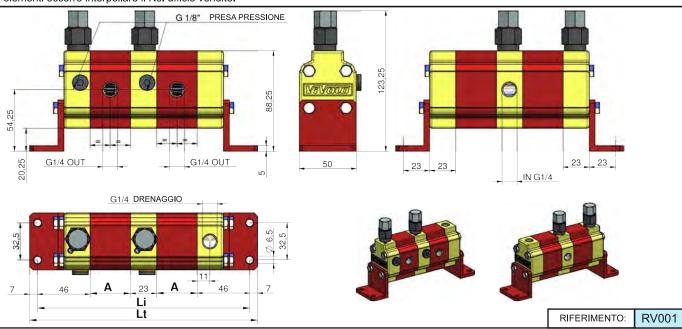


Tabella: 2

				Li =	Inter	asse	fori d	li fiss	aggio) (divis	ore co	n cilin	drate u	guali)		
Cm ³ /giro	^						١	lumer	o di el	ement	:i					
om /gno	A	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0,17	29,3	173,6	225,9	278,2	330,5	382,8	435,1	487,4	539,7	592	644,3	696,6	748,9	801,2	853,5	905,8
0,25	29,9	174,8	227,7	280,6	333,5	386,4	439,3	492,5	545,1	598	650,9	703,8	756,7	809,6	862,5	915,4
0,45	31,5	178	232,5	287	341,5	396	450,5	505	559,5	614	668,5	723	777,5	832	886,5	941
0,57	32,5	180	235,5	291	346,5	402	457,5	513	568,5	624	679,5	735	790,5	846	901,5	957
0,76	34	183	240	297	354	411	468	525	582	639	696	753	810	867	924	981
0,98	35,5	186	244,5	303	361,5	420	478,5	537	595,5	654	712,5	771	829,5	888	946,5	1005
1,27	38	191	252	313	374	435	496	557	618	679	740	801	862	923	984	1045
1,52	40	195	258	321	384	447	510	573	636	699	762	825	888	951	1014	1077
2,30	46	207	276	345	414	483	552	621	690	759	828	897	966	1035	1104	1173

Tabella: 3 In questa tabella sono indicati il numero di ingressi del divisore in funzione del numero di elementi

Numero di elementi	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Numero di ingressi	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

Divisore di Flusso con valvole di *rifasamento e anticavitazione* indipendenti per ogni singolo elemento

DRENAGGIO ESTERNO PREDISPOSIZIONE STANDARD DI FABBRICA Per il corretto funzionamento il divisore, va installato sottobattente. Il tubo di drenaggio deve pescare al di sotto del livello dell'olio e non deve aspirare aria. Per predisporre il divisore al drenaggio interno tappare il foro di drenaggio (T) da 1/4 G Nota: con questa configurazione la funzione delle valvole anticavitazione viene annullata.

Nella tabella 1 è indicato il campo di funzionamento dei singoli elementi divisore.

Più è alta la portata (q) di alimentazione, maggiore è la precisione di divisione del flusso, ma di contro si hanno perdite di carico e rumorosità più elevata. Pertanto consigliamo di alimentare gli elementi con portate uguali o di poco superiori a quelle indicate nella colonna "CONSIGLIATA".

Ricordarsi di verificare le portate anche in fase di riunificazione del flusso.

Le pressioni indicate sono da considerarsi massime di funzionamento, il divisore può supportare picchi di pressione superiori del 20%.

Come calcolare le misure "Li" e "Lt" del divisore:

Dalla **tabella 2** ricavare le misura "Li" per i divisori fino a 16 elementi con cilindrate uguali; per i divisori con elementi diversi o con più di 16 elementi le misura "Li" e "Lt" si calcolano con le seguenti formule:

Li =
$$[(n-1) \times 23] + 92 + (A1 + A2 + A3 +)$$
 92 = 46 + 46

n = Numero di elementi del divisore

A1... An = altezze elementi divisore

ESEMPIO: Per ottenere le misure Li e Lt di un divisore a tre elementi (n=3), del tipo RV-0V 0,98 + 0,76 +1,27

Interasse fori di fissaggio Li = $[(3-1) \times 23] + 92 + 35,5 + 34 + 38 = 245,5$ mm

Lunghezza di ingombro totale Lt = 245,5 + 14 = 259,5

Nella **tabella 3** sono indicati il numero di ingressi in funzione del numero di elementi Gli ingressi del divisore sono tutti comunicanti ed è possibile utilizzarne anche uno solo tappando gli altri. Consigliamo di sfruttare almeno **1** ingresso ogni **15 I/min** di portata

Per ottenere errori di divisione **inferiori al 3**% non si devono avere differenze di pressioni tra gli elementi superiori a **30 bar.** Per ottenere precisioni elevate è importante anche il rispetto dei seguenti parametri:

- Temperatura ambiente: -10°c ÷ +60°c Temperatura olio: +30°c ÷ +60°c

- Olio idraulico a base minerale hlp, hv (din 51524) Viscosità olio 20 ÷ 40 cSt

RV-0G

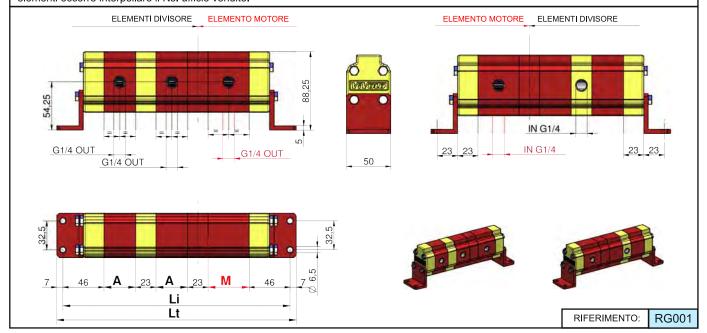
Divisore di Flusso + MOTORE

Codice:

9RG NN O CC CC

	- s
9RG	Tipo Divisore
NN	Numero di Elementi Divisore
0	Numero di Elementi MOTORE
CC	Codice della cilindrata dei MOTORI
CC	Codice della cilindrata degli Elementi Divisore

Esempio: Divisore a 2 elementi con cilindrate uguali con motore:


Esempio: Divisore a 4 elementi con cilindrate diverse con motore (max 6):

RV-0G / 0,57+0,76+1,27+0,45+1 MOTORE 2,30

9RG 04 1 13 05 06 09 04

NOTA: per codificare divisori con cilindrate diverse a più di 6 elementi occorre interpellare il Ns. ufficio vendite.

		Tabe	lla: 1							
Cilindrata	CC	Pressione	Portata di un elemento I/min							
Cm ³ /giro	Codice	max bar	MIN	CONSIGLIATA	MAX					
0,17	01	210	0,2	0,4	1,2					
0,25	02	210	0,3	0,7	1,8					
0,45	04	210	0,6	1,2	3					
0.57	05	210	0,8	1,5	3,8					
0,76	06	210	1	2	4,8					
0,98	07	210	1,2	2,3	5,6					
1,27	09	210	1,5	3	7,2					
1,52	11	210	1,9	3,5	8					
2,30	13	210	2,6	5	10,3					

Cm ³ /giro	A-M
0,17	29,3
0,25	29,9
0,45	31,5
0,57	32,5
0,76	34
0,98	35,5
1,27	38
1,52	40
2,30	46

 Tabella: 3
 In questa tabella sono indicati il numero di ingressi del divisore in funzione del numero di elementi

Numero di elementi	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Numero di ingressi	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

RV-0G

Divisore di Flusso + MOTORE

DRENAGGIO INTERNO IN OUT OUT OUT

Nella tabella 1 è indicato il campo di funzionamento dei singoli elementi divisore.

Più è alta la portata (q) di alimentazione, maggiore è la precisione di divisione del flusso, ma di contro si hanno perdite di carico e rumorosità più elevata. Pertanto consigliamo di alimentare gli elementi con portate uguali o di poco superiori a quelle indicate nella colonna "CONSIGLIATA".

Ricordarsi di verificare le portate anche in fase di riunificazione del flusso.

Le pressioni indicate sono da considerarsi massime di funzionamento, il divisore può supportare picchi di pressione superiori del 20%.

Come calcolare le misure "Li" e "Lt" del divisore:

Dalla **tabella 2** ricavare le misura "Li" per i divisori fino a 16 elementi con cilindrate uguali; per i divisori con elementi diversi o con più di 16 elementi le misura "Li" e "Lt" si calcolano con le seguenti formule:

Li =
$$[(n-1) \times 23] + 92 + (A1 + A2 + A3 +)$$
 92 = 46 + 46

n = Numero di elementi del divisore

A1... An = altezze elementi divisore

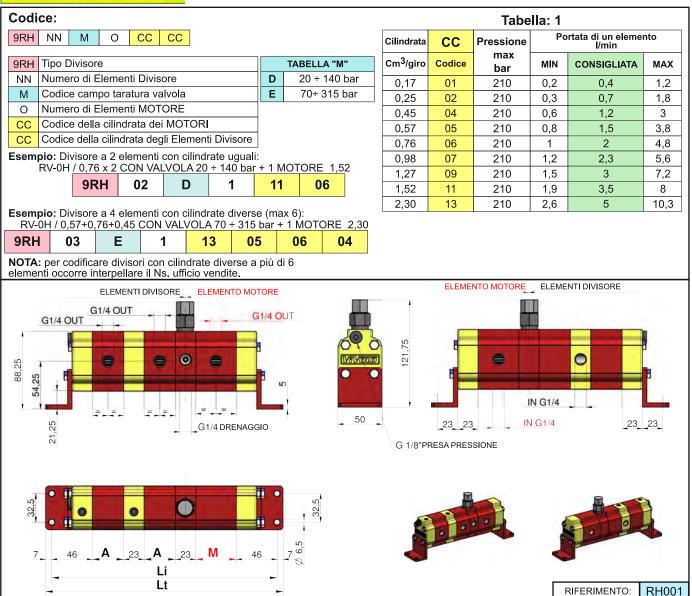
ESEMPIO: Per ottenere le misure Li e Lt di un divisore a tre elementi (n=3), del tipo RV-0G / 0,98 x 2+ 1 MOTORE 2,30

Interasse fori di fissaggio Li = $[(3-1) \times 23] + 92 + 35,5 + 35,5 + 46 = 255$ mm

Lunghezza di ingombro totale $\mathbf{Lt} = 245,5 + 14 = 269$

Nella **tabella 3** sono indicati il numero di ingressi in funzione del numero di elementi Gli ingressi del divisore sono tutti comunicanti ed è possibile utilizzarne anche uno solo tappando gli altri. Consigliamo di sfruttare almeno **1** ingresso ogni **15 I/min** di portata

Per ottenere errori di divisione **inferiori al 3%** non si devono avere differenze di pressioni tra gli elementi superiori a **30 bar.** Per ottenere precisioni elevate è importante anche il rispetto dei seguenti parametri:


- Temperatura ambiente: -10°c ÷ +60°c Temperatura olio: +30°c ÷ +60°c

Olio idraulico a base minerale hlp, hv (din 51524) Viscosità olio 20 ÷ 40 cSt

RV-0H

Divisore di Flusso con valvola singola di rifasamento comune a tutti gli elementi + MOTORE

Cm ³ /giro	A-M
0,17	29,3
0,25	29,9
0,45	31,5
0,57	32,5
0,76	34
0,98	35,5
1,27	38
1,52	40
2,30	46

Tabella: 3 In questa tabella sono indicati il numero di ingressi del divisore in funzione del numero di elementi

Numero di elementi	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Numero di ingressi	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

Divisore di Flusso con valvola singola di rifasamento comune a tutti gli elementi + MOTORE

DRENAGGIO ESTERNO PREDISPOSIZIONE STANDARD DI FABBRICA	DRENAGGIO INTERNO
Collegare il foro drenaggio (T) al serbatoio	Per predisporre il divisore al drenaggio interno eseguire le seguenti operazioni: 1. Smontare il grano G 1/8 alloggiato all'interno del foro di drenaggio 2. Con un tappo da ½ G tappare il foro di drenaggio (T)
OUT OUT TOUT OIL	OUT OUT TOUT

Nella tabella 1 è indicato il campo di funzionamento dei singoli elementi divisore.

Più è alta la portata (q) di alimentazione, maggiore è la precisione di divisione del flusso, ma di contro si hanno perdite di carico e rumorosità più elevata. Pertanto consigliamo di alimentare gli elementi con portate uguali o di poco superiori a quelle indicate nella colonna "CONSIGLIATA".

Ricordarsi di verificare le portate anche in fase di riunificazione del flusso.

Le pressioni indicate sono da considerarsi massime di funzionamento, il divisore può supportare picchi di pressione superiori del 20%.

Come calcolare le misure "Li" e "Lt" del divisore:

Dalla **tabella 2** ricavare le misura "Li" per i divisori fino a 16 elementi con cilindrate uguali; per i divisori con elementi diversi o con più di 16 elementi le misura "Li" e "Lt" si calcolano con le seguenti formule:

Li =
$$[(n-1) \times 23] + 92 + (A1 + A2 + A3 +)$$
 92 = 46 + 46

n = Numero di elementi del divisore

A1... An = altezze elementi divisore

ESEMPIO: Per ottenere le misure Li e Lt di un divisore a tre elementi (n=3), del tipo RV-0H / 0,98 x 2+ 1 MOTORE 2,30

Interasse fori di fissaggio Li = $[(3-1) \times 23] + 92 + 35,5 + 35,5 + 46 = 255 \text{ mm}$

Lunghezza di ingombro totale Lt = 255 + 14 = 269

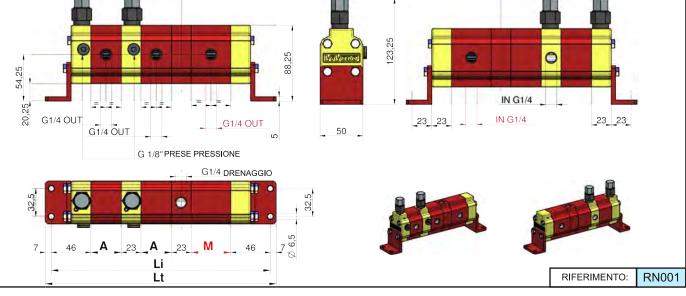
Nella tabella 3 sono indicati il numero di ingressi in funzione del numero di elementi

Gli ingressi del divisore sono tutti comunicanti ed è possibile utilizzarne anche uno solo tappando gli altri.

Consigliamo di sfruttare almeno 1 ingresso ogni 15 l/min di portata

Per ottenere errori di divisione **inferiori al 3**% non si devono avere differenze di pressioni tra gli elementi superiori a **30 bar.** Per ottenere precisioni elevate è importante anche il rispetto dei seguenti parametri:

- Temperatura ambiente: -10°c ÷ +60°c Temperatura olio: +30°c ÷ +60°c


- Olio idraulico a base minerale hlp, hv (din 51524) Viscosità olio 20 ÷ 40 cSt

RV-0N

BOLOGNA - ITALY Divisore di Flusso con valvole di *rifasamento e anticavitazione* indipendenti per ogni singolo elemento + MOTORE

Codi	ce:										Tabe	lla: 1		
9RN	NN	МО	CC	CC					Cilindrata	СС	Pressione	Po	ortata di un elemen I/min	nto
9RN	Tipo D						TABELL	A "M"	Cm ³ /giro	Codice	max bar	MIN	CONSIGLIATA	MAX
NN	Numer	o di Elem	enti Divis	ore		Α	7 ÷	70 bar	0,17	01	210	0,2	0,4	1,2
M	Codice	campo ta	aratura va	lvola		В	35÷	175 bar	0,25	02	210	0,3	0,7	1,8
0	Numer	o di Elem	enti MOT	ORE		С	70÷	350 bar	0,45	04	210	0,6	1,2	3
CC	Codice	della cilir	ndrata dei	MOTOF	SI				0.57	05	210	0,8	1,5	3,8
CC	Codice	della cilir	drata deg	li Elemer	nti Diviso	e			0,76	06	210	1	2	4,8
Esem			elementi						0,98	07	210	1,2	2,3	5,6
	RV-0N		CON VA	LVOLA	7 ÷ 70 ba				1,27	09	210	1,5	3	7,2
		9RN	02	Α	1	11	I 0	6	1,52	11	210	1,9	3,5	8
_	. 5.					. ,			2,30	13	210	2,6	5	10,3
			elementi e 27 CON					DRE 2.30						
9RN					13	05	06	09						
				- ilia alaa										
			ivisori cor ellare il N:			a piu c	116							
		ELEM	ENTI DIVISO	RE EL	EMENTO N	OTORE			ELE	EMENTO MO	TORE ELEI	MENTI DI	/ISORE	
													-	
									•					
				_			1							
	E					—		6	123,25		_	_		
						P			7					

Cm ³ /giro	A-M
0,17	29,3
0,25	29,9
0,45	31,5
0,57	32,5
0,76	34
0,98	35,5
1,27	38
1,52	40
2,30	46

 Tabella: 3
 In questa tabella sono indicati il numero di ingressi del divisore in funzione del numero di elementi

Numero di elementi	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Numero di ingressi	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

Divisore di Flusso con valvole di *rifasamento e anticavitazione* indipendenti per ogni singolo elemento + MOTORE

DRENAGGIO ESTERNO PREDISPOSIZIONE STANDARD DI FABBRICA Per il corretto funzionamento il divisore, va installato sottobattente. Il tubo di drenaggio deve pescare al di sotto del livello dell'olio e non deve aspirare aria. Per predisporre il divisore al drenaggio interno tappare il foro di drenaggio (T) da 1/4 G Nota: con questa configurazione la funzione delle valvole anticavitazione viene annullata.

Nella tabella 1 è indicato il campo di funzionamento dei singoli elementi divisore.

Più è alta la portata (q) di alimentazione, maggiore è la precisione di divisione del flusso, ma di contro si hanno perdite di carico e rumorosità più elevata. Pertanto consigliamo di alimentare gli elementi con portate uguali o di poco superiori a quelle indicate nella colonna "CONSIGLIATA".

Ricordarsi di verificare le portate anche in fase di riunificazione del flusso.

Le pressioni indicate sono da considerarsi massime di funzionamento, il divisore può supportare picchi di pressione superiori del 20%.

Come calcolare le misure "Li" e "Lt" del divisore:

Dalla **tabella 2** ricavare le misura "Li" per i divisori fino a 16 elementi con cilindrate uguali; per i divisori con elementi diversi o con più di 16 elementi le misura "Li" e "Lt" si calcolano con le seguenti formule:

Li =
$$[(n-1) \times 23] + 92 + (A1 + A2 + A3 +)$$
 92 = 46 + 46

n = Numero di elementi del divisore

A1... An = altezze elementi divisore

ESEMPIO: Per ottenere le misure Li e Lt di un divisore a tre elementi (n=3), del tipo RV-0N / 0,98 x 2+ 1 MOTORE 2,30

Interasse fori di fissaggio Li = $[(3-1) \times 23] + 92 + 35.5 + 35.5 + 46 = 255$ mm

Lunghezza di ingombro totale $\mathbf{Lt} = 245,5 + 14 = 269$

Nella **tabella 3** sono indicati il numero di ingressi in funzione del numero di elementi Gli ingressi del divisore sono tutti comunicanti ed è possibile utilizzarne anche uno solo tappando gli altri. Consigliamo di sfruttare almeno **1** ingresso ogni **15 l/min** di portata

Per ottenere errori di divisione **inferiori al 3%** non si devono avere differenze di pressioni tra gli elementi superiori a **30 bar.** Per ottenere precisioni elevate è importante anche il rispetto dei seguenti parametri:

- Temperatura ambiente: -10°c ÷ +60°c Temperatura olio: +30°c ÷ +60°c

- Olio idraulico a base minerale hlp, hv (din 51524) Viscosità olio 20 ÷ 40 cSt

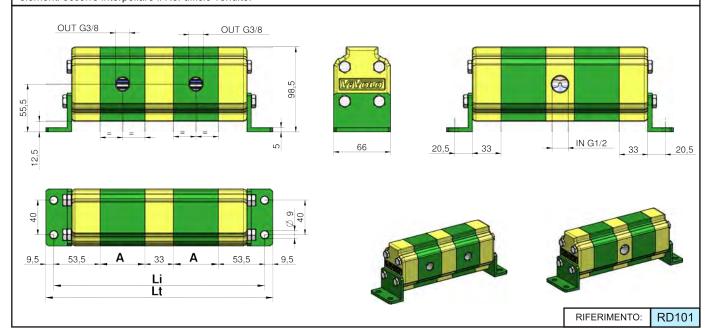
Divisore di Flusso (modello Base)

Codice:

9RD NN CC

9RD	Tipo Divisore
NN	Numero di Elementi
CC	Codice della cilindrata degli elementi

Esempio: Divisore a 2 elementi con cilindrate uguali:


RV-1D / 3,8 x 2 **9RD 02 25**

Esempio: Divisore a 4 elementi con cilindrate diverse (max 7):

PRD 04 25 29 29

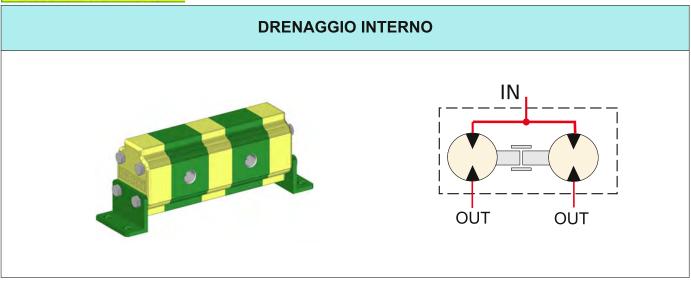
NOTA: per codificare divisori con cilindrate diverse a più di 7 elementi occorre interpellare il Ns. ufficio vendite.

		Tabe	lla: 1		
Cilindrata	СС	Pressione	Po	rtata di un eleme I/min	nto
Cm ³ /giro	Codice	max bar	MIN	CONSIGLIATA	MAX
0,9	16	220	1	2	6
1,2	17	220	1,5	3	7
1,7	18	220	2	4	9
2,2	20	220	2,5	5	13
2,6	21	220	3	6	15,5
3,2	23	220	3,5	7,5	18
3,8	25	220	4	8,5	21
4,3	27	220	4,5	9,5	23
4,9	29	220	5,5	11	27
5,9	31	220	6,5	13	30
6,5	32	220	7,5	14	32
7,8	34	210	8,5	16	35,5
9,8	36	200	11	20	41

Tabella: 2

Li = Interasse fori di fissaggio (divisore con cilindrate uguali)

					IIICI	3550	1011 0	11 1133	aggic) (aivid	,0,0	11 011111	arato a	gaan,		
Cm ³ /giro	٨						١	lumer	o di el	ement	ti					
om /gno	Α	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0,9	41,5	223	297,5	372	446,5	521	595,5	670	744,5	819	893,5	968	1042,5	1117	1191,5	1266
1,2	42,5	225	300,5	376	451,5	527	602,5	678	753,5	829	904,5	980	1055,5	1131	1206,5	1282
1,7	44	228	305	382	459	536	613	690	767	844	921	998	1075	1152	1229	1306
2,2	46	232	311	390	469	548	627	706	785	864	943	1022	1101	1180	1259	1338
2,6	48	236	317	398	479	560	641	722	803	884	965	1046	1127	1208	1289	1370
3,2	50	240	323	406	489	572	655	738	821	904	987	1070	1153	1236	1319	1402
3,8	52	244	329	414	499	584	669	754	839	924	1009	1094	1179	1264	1349	1434
4,3	54	248	335	422	509	596	683	770	857	944	1031	1118	1205	1292	1379	1466
4,9	57	254	344	434	524	614	704	794	884	974	1064	1154	1244	1334	1424	1514
5,9	60,5	261	354,5	448	541,5	635	728,5	822	915,5	1009	1103	1196	1289,5	1383	1476,5	1570
6,5	63	266	362	458	554	650	746	842	938	1034	1130	1226	1322	1418	1514	1610
7,8	67	274	374	474	574	674	774	874	974	1074	1174	1274	1374	1474	1574	1674
9,8	76	292	401	510	619	728	837	946	1055	1164	1273	1382	1491	1600	1709	1818


 Tabella: 3
 In questa tabella sono indicati il numero di ingressi del divisore in funzione del numero di elementi

Numero di elementi	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Numero di ingressi	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

Divisore di Flusso (modello Base)

Nella tabella 1 è indicato il campo di funzionamento dei singoli elementi divisore.

Più è alta la portata (q) di alimentazione, maggiore è la precisione di divisione del flusso, ma di contro si hanno perdite di carico e rumorosità più elevata. Pertanto consigliamo di alimentare gli elementi con portate uguali o di poco superiori a quelle indicate nella colonna "CONSIGLIATA".

Ricordarsi di verificare le portate anche in fase di riunificazione del flusso.

Le pressioni indicate sono da considerarsi massime di funzionamento, il divisore può supportare picchi di pressione superiori del 20%.

Come calcolare le misure "Li" e "Lt" del divisore:

Dalla **tabella 2** ricavare le misura "Li" per i divisori fino a 16 elementi con cilindrate uguali; per i divisori con elementi diversi o con più di 16 elementi le misura "Li" e "Lt" si calcolano con le seguenti formule:

Li =
$$[(n-1) \times 33] + 107 + (A1 + A2 + A3 +)$$
 107 = 53,5 + 53,5

n = Numero di elementi del divisore

A1... An = altezze elementi divisore

$$Lt = Li + 19$$
 $19 = 9.5 + 9.5$

ESEMPIO: Per ottenere le misure Li e Lt di un divisore a tre elementi (n=3), del tipo RV-1D 4.3 + 2,2 +0,9

Interasse fori di fissaggio Li = $[(3-1) \times 33] + 107 + 54 + 46 + 41,5 = 314,5$ mm

Lunghezza di ingombro totale $\mathbf{Lt} = 314,5 + 19 = 333,5$

Nella **tabella 3** sono indicati il numero di ingressi in funzione del numero di elementi Gli ingressi del divisore sono tutti comunicanti ed è possibile utilizzarne anche uno solo tappando gli altri. Consigliamo di sfruttare almeno **1** ingresso ogni **40 I/min** di portata

Per ottenere errori di divisione **inferiori al 3%** non si devono avere differenze di pressioni tra gli elementi superiori a **30 bar.** Per ottenere precisioni elevate è importante anche il rispetto dei seguenti parametri:

- Temperatura ambiente: -10°c ÷ +60°c Temperatura olio: +30°c ÷ +60°c

- Olio idraulico a base minerale hlp, hv (din 51524) Viscosità olio 20 ÷ 40 cSt

RV-1S

Divisore di Flusso con valvola singola di rifasamento comune a tutti gli elementi

Codice:

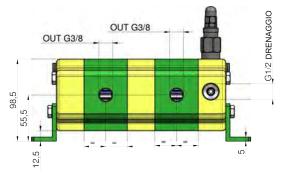
9RS NN M CC

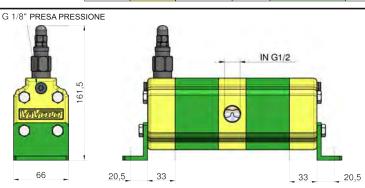
9RD	Tipo Divisore
NN	Numero di Elementi
М	Codice campo taratura valvola
CC	Codice della cilindrata degli elementi

	TABELLA "M"
С	10 ÷ 105 bar
D	70÷ 210 bar
Е	140 ÷ 350 bar

Esempio: Divisore a 2 elementi con cilindrate uguali: RV-1S / 3,8 x 2 CON VALVOLA 10 ÷ 105 bar

9RS 02 C 25


Esempio: Divisore a 4 elementi con cilindrate diverse (max 7):


RV-1S / 3,8+4,9+4,9+6,5 CON VALVOLA 70 ÷ 210 bar

9RS 04 D 25 29 29

NOTA: per codificare divisori con cilindrate diverse a più di 7 elementi occorre interpellare il Ns. ufficio vendite.

		Tabe	lla: 1		
Cilindrata	СС	Pressione	Po	rtata di un eleme I/min	nto
Cm ³ /giro	Codice	max bar	MIN	CONSIGLIATA	MAX
0,9	16	220	1	2	6
1,2	17	220	1,5	3	7
1,7	18	220	2	4	9
2,2	20	220	2,5	5	13
2,6	21	220	3	6	15,5
3,2	23	220	3,5	7,5	18
3,8	25	220	4	8,5	21
4,3	27	220	4,5	9,5	23
4,9	29	220	5,5	11	27
5,9	31	220	6,5	13	30
6,5	32	220	7,5	14	32
7,8	34	210	8,5	16	35,5
9,8	36	200	11	20	41

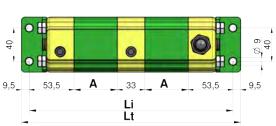


Tabella: 2

Li = Interasse fori di fissaggio (divisore con cilindrate uguali)

A
41,5
42,5
44
46
48
50
52
54
57
60,5
63
67
76

		LI =	intera	asse	tori d	II IISS	aggic) (aivis	sore co	n cilin	arate u	guaii)		
					N	lumer	o di el	ement	ti					
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
223	297,5	372	446,5	521	595,5	670	744,5	819	893,5	968	1042,5	1117	1191,5	1266
225	300,5	376	451,5	527	602,5	678	753,5	829	904,5	980	1055,5	1131	1206,5	1282
228	305	382	459	536	613	690	767	844	921	998	1075	1152	1229	1306
232	311	390	469	548	627	706	785	864	943	1022	1101	1180	1259	1338
236	317	398	479	560	641	722	803	884	965	1046	1127	1208	1289	1370
240	323	406	489	572	655	738	821	904	987	1070	1153	1236	1319	1402
244	329	414	499	584	669	754	839	924	1009	1094	1179	1264	1349	1434
248	335	422	509	596	683	770	857	944	1031	1118	1205	1292	1379	1466
254	344	434	524	614	704	794	884	974	1064	1154	1244	1334	1424	1514
261	354,5	448	541,5	635	728,5	822	915,5	1009	1103	1196	1289,5	1383	1476,5	1570
266	362	458	554	650	746	842	938	1034	1130	1226	1322	1418	1514	1610
274	374	474	574	674	774	874	974	1074	1174	1274	1374	1474	1574	1674
292	401	510	619	728	837	946	1055	1164	1273	1382	1491	1600	1709	1818

Tabella: 3 In questa tabella sono indicati il numero di ingressi del divisore in funzione del numero di elementi

Numero di elementi	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Numero di ingressi	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

Divisore di Flusso con valvola singola di rifasamento comune a tutti gli elementi

DRENAGGIO ESTERNO PREDISPOSIZIONE STANDARD DI FABBRICA	DRENAGGIO INTERNO
Collegare il foro drenaggio (T) al serbatoio	Per predisporre il divisore al drenaggio interno eseguire le seguenti operazioni: 1. Smontare il grano G 1/8 alloggiato all'interno del foro di drenaggio 2. Con un tappo da ½ G tappare il foro di drenaggio (T)
OUT OUT TOIL	M _G 1/8"

Nella tabella 1 è indicato il campo di funzionamento dei singoli elementi divisore.

Più è alta la portata (q) di alimentazione, maggiore è la precisione di divisione del flusso, ma di contro si hanno perdite di carico e rumorosità più elevata. Pertanto consigliamo di alimentare gli elementi con portate uguali o di poco superiori a quelle indicate nella colonna "CONSIGLIATA".

Ricordarsi di verificare le portate anche in fase di riunificazione del flusso.

Le pressioni indicate sono da considerarsi massime di funzionamento, il divisore può supportare picchi di pressione superiori del 20%.

Come calcolare le misure "Li" e "Lt" del divisore:

Dalla **tabella 2** ricavare le misura "Li" per i divisori fino a 16 elementi con cilindrate uguali; per i divisori con elementi diversi o con più di 16 elementi le misura "Li" e "Lt" si calcolano con le seguenti formule:

Li =
$$[(n-1) \times 33] + 107 + (A1 + A2 + A3 +)$$
 107 = 53,5 + 53,5

n = Numero di elementi del divisoreA1... An = altezze elementi divisore

$$Lt = Li + 19$$
 $19 = 9.5 + 9.5$

ESEMPIO: Per ottenere le misure Li e Lt di un divisore a tre elementi (n=3), del tipo RV-1S 4.3 + 2,2 +0,9

Interasse fori di fissaggio Li = $[(3-1) \times 33] + 107 + 54 + 46 + 41,5 = 314,5$ mm

Lunghezza di ingombro totale Lt = 314,5 + 19 = 333,5

Nella **tabella 3** sono indicati il numero di ingressi in funzione del numero di elementi Gli ingressi del divisore sono tutti comunicanti ed è possibile utilizzarne anche uno solo tappando gli altri. Consigliamo di sfruttare almeno **1** ingresso ogni **40 l/min** di portata

Per ottenere errori di divisione **inferiori al 3%** non si devono avere differenze di pressioni tra gli elementi superiori a **30 bar.** Per ottenere precisioni elevate è importante anche il rispetto dei seguenti parametri:

- Temperatura ambiente: -10°c ÷ +60°c Temperatura olio: +30°c ÷ +60°c

- Olio idraulico a base minerale hlp, hv (din 51524) Viscosità olio 20 ÷ 40 cSt

1042,5

1055,5

1289,5

1191,5

1206,5

1476,5

Divisore di Flusso con valvole di rifasamento e anticavitazione indipendenti per ogni singolo elemento

Codice:

9RV NN M CC

9RV	Tipo Divisore
NN	Numero di Elementi
М	Codice campo taratura valvola
CC	Codice della cilindrata degli elementi

TABELLA "M"

A 7÷ 210 bar

B 105÷ 420 bar

Esempio: Divisore a 2 elementi con cilindrate uguali: RV-1V / 3,8 x 2 CON VALVOLA 7 ÷ 210 bar

9RV 02 A 25

Esempio: Divisore a 4 elementi con cilindrate diverse (max 7):

RV-1V / 3,8+4,9+4,9+6,5 CON VALVOLA 105 ÷ 420 bar

9RV 04 B 25 29 29 32

NOTA: per codificare divisori con cilindrate diverse a più di 7 elementi occorre interpellare il Ns. ufficio vendite.

	Tabella: 1													
Cilindrata	СС	Pressione	1/111111											
Cm ³ /giro	Codice	max bar	MIN	CONSIGLIATA	MAX									
0,9	16	220	1	2	6									
1,2	17	220	1,5	3	7									
1,7	18	220	2	4	9									
2,2	20	220	2,5	5	13									
2,6	21	220	3	6	15,5									
3,2	23	220	3,5	7,5	18									
3,8	25	220	4	8,5	21									
4,3	27	220	4,5	9,5	23									
4,9	29	220	5,5	11	27									
5,9	31	220	6,5	13	30									
6,5	32	220	7,5	14	32									
7,8	34	210	8,5	16	35,5									
9,8	36	200	11	20	41									

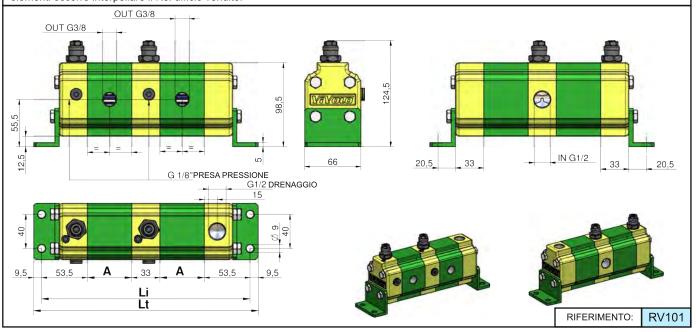


Tabella: 2

Li = Interasse fori di fissaggio (divisore con cilindrate uguali)

							.0		~99.4	(
Cm ³ /giro	Α.						١	lumer	o di el	ement	ti	
om /gno	Α	2	3	4	5	6	7	8	9	10	11	12
0,9	41,5	223	297,5	372	446,5	521	595,5	670	744,5	819	893,5	968
1,2	42,5	225	300,5	376	451,5	527	602,5	678	753,5	829	904,5	980
1,7	44	228	305	382	459	536	613	690	767	844	921	998
2,2	46	232	311	390	469	548	627	706	785	864	943	1022
2,6	48	236	317	398	479	560	641	722	803	884	965	1046
3,2	50	240	323	406	489	572	655	738	821	904	987	1070
3,8	52	244	329	414	499	584	669	754	839	924	1009	1094
4,3	54	248	335	422	509	596	683	770	857	944	1031	1118
4,9	57	254	344	434	524	614	704	794	884	974	1064	1154
5,9	60,5	261	354,5	448	541,5	635	728,5	822	915,5	1009	1103	1196
6,5	63	266	362	458	554	650	746	842	938	1034	1130	1226
7,8	67	274	374	474	574	674	774	874	974	1074	1174	1274
9,8	76	292	401	510	619	728	837	946	1055	1164	1273	1382

Tabella: 3 In questa tabella sono indicati il numero di ingressi del divisore in funzione del numero di elementi

Numero di elementi	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Numero di ingressi	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

Divisore di Flusso con valvole di *rifasamento e anticavitazione* indipendenti per ogni singolo elemento

DRENAGGIO ESTERNO PREDISPOSIZIONE STANDARD DI FABBRICA Per il corretto funzionamento il divisore, va installato sottobattente. Il tubo di drenaggio deve pescare al di sotto del livello dell'olio e non deve aspirare aria. Per predisporre il divisore al drenaggio interno tappare il foro di drenaggio (T) da ½ G Nota: con questa configurazione la funzione delle valvole anticavitazione viene annullata.

Nella tabella 1 è indicato il campo di funzionamento dei singoli elementi divisore.

Più è alta la portata (q) di alimentazione, maggiore è la precisione di divisione del flusso, ma di contro si hanno perdite di carico e rumorosità più elevata. Pertanto consigliamo di alimentare gli elementi con portate uguali o di poco superiori a quelle indicate nella colonna "CONSIGLIATA".

Ricordarsi di verificare le portate anche in fase di riunificazione del flusso.

Le pressioni indicate sono da considerarsi massime di funzionamento, il divisore può supportare picchi di pressione superiori del 20%.

Come calcolare le misure "Li" e "Lt" del divisore:

Dalla **tabella 2** ricavare le misura "Li" per i divisori fino a 16 elementi con cilindrate uguali; per i divisori con elementi diversi o con più di 16 elementi le misura "Li" e "Lt" si calcolano con le seguenti formule:

Li =
$$[(n-1) \times 33] + 107 + (A1 + A2 + A3 +)$$
 107 = 53,5 + 53,5

n = Numero di elementi del divisore

$$Lt = Li + 19$$
 $19 = 9.5 + 9.5$

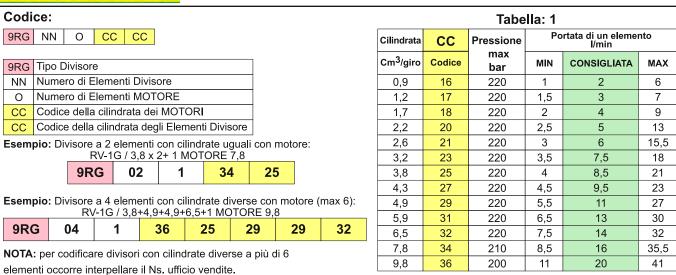
ESEMPIO: Per ottenere le misure Li e Lt di un divisore a tre elementi (n=3), del tipo RV-1V 4.3 + 2,2 +0,9

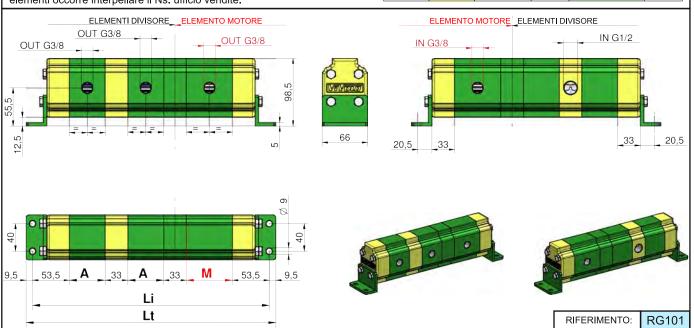
Interasse fori di fissaggio Li = $[(3-1) \times 33] + 107 + 54 + 46 + 41,5 = 314,5 \text{ mm}$

Lunghezza di ingombro totale Lt = 314,5 + 19 = 333,5

Nella **tabella 3** sono indicati il numero di ingressi in funzione del numero di elementi Gli ingressi del divisore sono tutti comunicanti ed è possibile utilizzarne anche uno solo tappando gli altri. Consigliamo di sfruttare almeno **1** ingresso ogni **40** I/min di portata

Per ottenere errori di divisione **inferiori al 3%** non si devono avere differenze di pressioni tra gli elementi superiori a **30 bar.** Per ottenere precisioni elevate è importante anche il rispetto dei seguenti parametri:


- Temperatura ambiente: -10°c ÷ +60°c Temperatura olio: +30°c ÷ +60°c


- Olio idraulico a base minerale hlp, hv (din 51524) Viscosità olio 20 ÷ 40 cSt

Divisore di Flusso + MOTORE

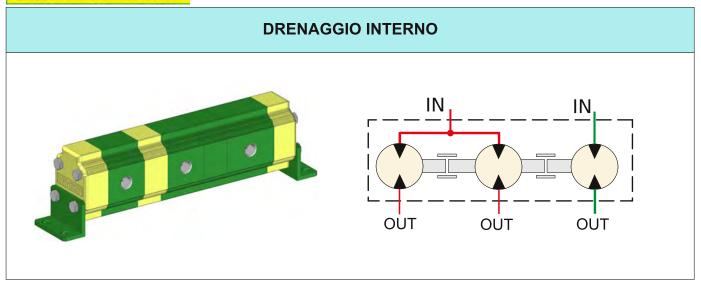

Cm ³ /giro	A-M
0,9	41,5
1,2	42,5
1,7	44
2,2	46
2,6	48
3,2	50
3,8	52
4,3	54
4,9	57
5,9	60,5
6,5	63
7,8	67
9,8	76

Tabella: 3 In questa tabella sono indicati il numero di ingressi del divisore in funzione del numero di elementi

Numero di elementi	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Numero di ingressi	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

RV-1G

Divisore di Flusso + MOTORE

Nella tabella 1 è indicato il campo di funzionamento dei singoli elementi divisore.

Più è alta la portata (q) di alimentazione, maggiore è la precisione di divisione del flusso, ma di contro si hanno perdite di carico e rumorosità più elevata. Pertanto consigliamo di alimentare gli elementi con portate uguali o di poco superiori a quelle indicate nella colonna "CONSIGLIATA".

Ricordarsi di verificare le portate anche in fase di riunificazione del flusso.

Le pressioni indicate sono da considerarsi massime di funzionamento, il divisore può supportare picchi di pressione superiori del 20%.

Come calcolare le misure "Li" e "Lt" del divisore:

Dalla **tabella 2** ricavare le misura "Li" per i divisori fino a 16 elementi con cilindrate uguali; per i divisori con elementi diversi o con più di 16 elementi le misura "Li" e "Lt" si calcolano con le seguenti formule:

Li =
$$[(n-1) \times 33] + 107 + (A1 + A2 + A3 +)$$
 107 = 53,5 + 53,5

n = Numero di elementi del divisore

A1... An = altezze elementi divisore

$$Lt = Li + 19$$
 $19 = 9.5 + 9.5$

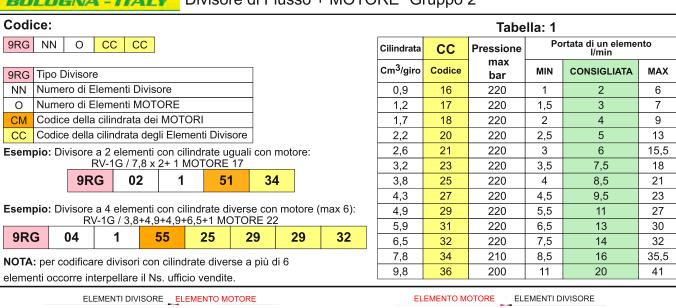
ESEMPIO: Per ottenere le misure Li e Lt di un divisore a 2 elementi+motore (n=3), del tipo RV-1G / 3,8 x 2+ 1 MOTORE 7,8

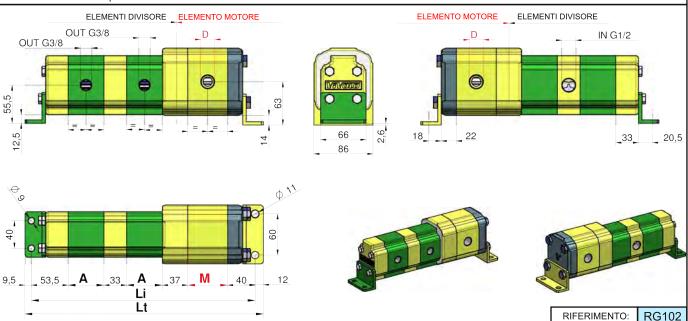
Interasse fori di fissaggio Li = $[(3-1) \times 33] + 107 + 52 + 52 + 67 = 344 \text{ mm}$

Lunghezza di ingombro totale Lt = 344 + 19 = 363

Nella **tabella 3** sono indicati il numero di ingressi in funzione del numero di elementi Gli ingressi del divisore sono tutti comunicanti ed è possibile utilizzarne anche uno solo tappando gli altri. Consigliamo di sfruttare almeno **1** ingresso ogni **40 I/min** di portata

Per ottenere errori di divisione **inferiori al 3%** non si devono avere differenze di pressioni tra gli elementi superiori a **30 bar.** Per ottenere precisioni elevate è importante anche il rispetto dei seguenti parametri:

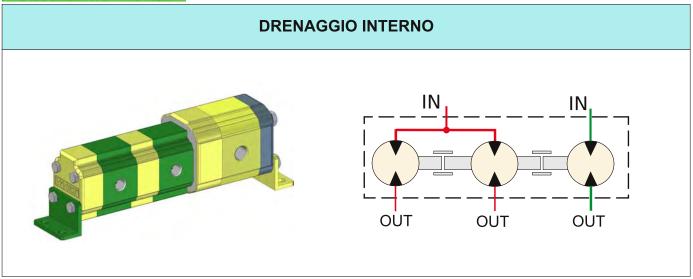

- Temperatura ambiente: -10°c ÷ +60°c Temperatura olio: +30°c ÷ +60°c


Olio idraulico a base minerale hlp, hv (din 51524) Viscosità olio 20 ÷ 40 cSt

Divisore di Flusso + MOTORE "Gruppo 2"

Cm ³ /giro	Α
0,9	41,5
1,2	42,5
1,7	44
2,2	46
2,6	48
3,2	50
3,8	52
4,3	54
4,9	57
5,9	60,5
6,5	63
7,8	67
9,8	76

Cm ³ /giro	СМ	M	D
4	41	47	1/2" BSP
6	43	50	1/2" BSP
9	45	54	1/2" BSP
11	47	58	1/2" BSP
14	49	64	3/4" BSP
17	51	68	3/4" BSP
19	53	72	3/4" BSP
22	55	78	3/4" BSP
26	57	82	1" BSP
30	59	90	1" BSP
34	61	97	1" BSP
40	63	106	1" BSP


Tabella: 3 In questa tabella sono indicati il numero di ingressi del divisore in funzione del numero di elementi

Numero di elementi	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Numero di ingressi	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

Divisore di Flusso + MOTORE "Gruppo 2"

Nella tabella 1 è indicato il campo di funzionamento dei singoli elementi divisore.

Più è alta la portata (q) di alimentazione, maggiore è la precisione di divisione del flusso, ma di contro si hanno perdite di carico e rumorosità più elevata. Pertanto consigliamo di alimentare gli elementi con portate uguali o di poco superiori a quelle indicate nella colonna "CONSIGLIATA".

Ricordarsi di verificare le portate anche in fase di riunificazione del flusso.

Le pressioni indicate sono da considerarsi massime di funzionamento, il divisore può supportare picchi di pressione superiori del 20%.

Come calcolare le misure "Li" e "Lt" del divisore:

Li =
$$[(n-1) \times 33] + 130,5 + (M1 + M2 + M3 +...) + (A1 + A2 + A3 +...)$$

130,5 = 53,5 + 37 + 40

n = Numero di elementi del divisore

A1... An = altezze elementi divisore

M1...Mn= altezze elementi motore

ESEMPIO: Per ottenere le misure Li e Lt di un divisore a 2 elementi+ 1 motore (n=2), del tipo RV-1G / 3,8 x 2+ 1 MOTORE 11

Interasse fori di fissaggio

 $Li = [(2-1) \times 33] + 130,5 + 47 + 52 + 52 = 314,5 \text{ mm}$

Lunghezza di ingombro totale Lt = 314,5 + 21,5 = 336

Nella **tabella 3** sono indicati il numero di ingressi in funzione del numero di elementi Gli ingressi del divisore sono tutti comunicanti ed è possibile utilizzarne anche uno solo tappando gli altri. Consigliamo di sfruttare almeno **1** ingresso ogni **40 I/min** di portata

Per ottenere errori di divisione **inferiori al 3%** non si devono avere differenze di pressioni tra gli elementi superiori a **30 bar.** Per ottenere precisioni elevate è importante anche il rispetto dei seguenti parametri:

- Temperatura ambiente: -10°c ÷ +60°c

Temperatura olio: +30°c ÷ +60°c

- Olio idraulico a base minerale hlp, hv (din 51524)

Viscosità olio 20 ÷ 40 cSt

Divisore di Flusso con valvola singola di rifasamento comune a tutti gli elementi + MOTORE

Codice) :											Tabe	lla: 1		
9RH N	NN N	1 0	CC	CC						Cilindrata	СС	Pressione	Po	rtata di un eleme I/min	nto
9RH Ti	ipo Divis	ore					1	TABELL	A "M"	Cm ³ /giro	Codice	max bar	MIN	CONSIGLIATA	MAX
NN N	umero d	di Eleme	enti Divis	ore			С	10 ÷	105 bar	0,9	16	220	1	2	6
		•	ratura va				D		210 bar	1,2	17	220	1,5	3	7
			enti MOT				E	140 ÷	350 bar	1,7	18	220	2	4	9
-			drata dei							2,2	20	220	2,5	5	13
CC C	odice de	ella cilin	drata deg	li Elemer	nti Diviso	ore				2,6	21	220	3	6	15,5
			elementi						7.0	3,2	23	220	3,5	7,5	18
F			CON VAL) ÷ 105					3,8	25	220	4	8,5	21
		PRH	02	С	1		34	2	5	4,3	27	220	4,5	9,5	23
-	- Di -i-	4	. 1 4:		l	/		C \-		4,9	29	220	5,5	11	27
			elementi (,9 CON \						RF 6.5	5,9	31	220	6,5	13	30
9RH	03	D			32	25		29	29	6,5	32	220	7,5	14	32
									23	7,8	34	210	8,5	16	35,5
			visori cor Ilare il N				ù di (6		9,8	36	200	11	20	41
			ITI DIVISOR							ELEM	ENTO MOT	ORE ELEME	NTI DIVIS	SORE	
						Г G3/8			_	IN G3	/8				

Cm ³ /giro	A-M
0,9	41,5
1,2	42,5
1,7	44
2,2	46
2,6	48
3,2	50
3,8	52
4,3	54
4,9	57
5,9	60,5
6,5	63
7,8	67
9,8	76

 Tabella: 3
 In questa tabella sono indicati il numero di ingressi del divisore in funzione del numero di elementi

Numero di elementi	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Numero di ingressi	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

Divisore di Flusso con *valvola singola di rifasamento* comune a tutti gli elementi + MOTORE

DRENAGGIO ESTERNO PREDISPOSIZIONE STANDARD DI FABBRICA	DRENAGGIO INTERNO
Collegare il foro drenaggio (T) al serbatoio	Per predisporre il divisore al drenaggio interno eseguire le seguenti operazioni: 1. Smontare il grano G 1/8 alloggiato all'interno del foro di drenaggio 2. Con un tappo da ½ G tappare il foro di drenaggio (T)
OUT OUT TOUT OIL	OUT OUT TOUT

Nella tabella 1 è indicato il campo di funzionamento dei singoli elementi divisore.

Più è alta la portata (q) di alimentazione, maggiore è la precisione di divisione del flusso, ma di contro si hanno perdite di carico e rumorosità più elevata. Pertanto consigliamo di alimentare gli elementi con portate uguali o di poco superiori a quelle indicate nella colonna "CONSIGLIATA".

Ricordarsi di verificare le portate anche in fase di riunificazione del flusso.

Le pressioni indicate sono da considerarsi massime di funzionamento, il divisore può supportare picchi di pressione superiori del 20%.

Come calcolare le misure "Li" e "Lt" del divisore:

Dalla **tabella 2** ricavare le misura "Li" per i divisori fino a 16 elementi con cilindrate uguali; per i divisori con elementi diversi o con più di 16 elementi le misura "Li" e "Lt" si calcolano con le seguenti formule:

Li =
$$[(n-1) \times 33] + 107 + (A1 + A2 + A3 +)$$
 107 = 53,5 + 53,5

n = Numero di elementi del divisore

A1... An = altezze elementi divisore

Lt = Li + 19 **19** =
$$9.5 + 9.5$$

ESEMPIO: Per ottenere le misure Li e Lt di un divisore a 2 elementi+motore (n=3), del tipo RV-1H / 3,8 x 2+ 1 MOTORE 7,8

Interasse fori di fissaggio Li = $[(3-1) \times 33] + 107 + 52 + 52 + 67 = 344$ mm

Lunghezza di ingombro totale Lt = 344 + 19 = 363

Nella tabella 3 sono indicati il numero di ingressi in funzione del numero di elementi

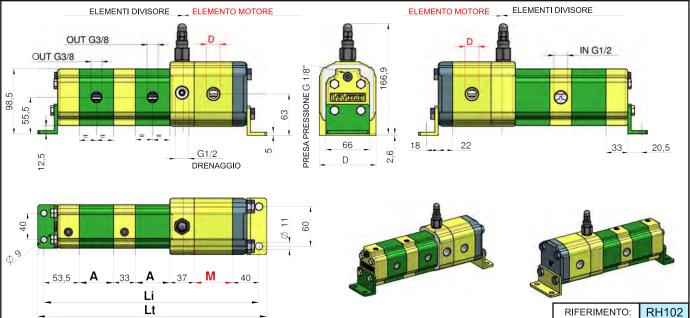
Gli ingressi del divisore sono tutti comunicanti ed è possibile utilizzarne anche uno solo tappando gli altri.

Consigliamo di sfruttare almeno 1 ingresso ogni 40 I/min di portata

Per ottenere errori di divisione **inferiori al 3**% non si devono avere differenze di pressioni tra gli elementi superiori a **30 bar.** Per ottenere precisioni elevate è importante anche il rispetto dei seguenti parametri:

- Temperatura ambiente: -10°c ÷ +60°c Temperatura olio: +30°c ÷ +60°c

- Olio idraulico a base minerale hlp, hv (din 51524) Viscosità olio 20 ÷ 40 cSt



Divisore di Flusso con *valvola singola di rifasamento* comune a tutti gli elementi + MOTORE "Gruppo 2"

Codi	ce:											
9RH	NN	М	0	CC	CC						Cilindrata	СС
9RH	Tipo D	ivisor	е						TABEL	LA "M"	Cm ³ /giro	Codice
NN	Nume	ro di E	lemen	ti Divis	ore			С	10 ÷	- 105 bar	0,9	16
M	Codic	e cam	po tara	itura va	alvola			D	70÷	210 bar	1,2	17
0	Nume	ro di E	lemen	ti MOT	ORE			Е	140 -	÷ 350 bar	1,7	18
CM	Codic	e della	cilind	rata de	i MOT				2,2	20		
CC	Codice	e della	cilindr	ata de	gli Ele	menti I	Divisore				2,6	21
Esem							te uguali				3,2	23
	RV-1	H / 7,8	3 x 2 C	ON VA	LVOL	A 10 ÷	- 105 bar	+ 1 N	<i>I</i> OTOR	E 17	3,8	25
		9R	Н	02	C	;	1	51	(34	4,3	27
_					•						4,9	29
							te divers 0 ÷ 210 l			DE 14	5,9	31
		29	6,5	32								
9RH		7,8	34									
	OTA: per codificare divisori con cilindrate diverse a più di 6 ementi occorre interpellare il Ns. ufficio vendite.											
eieme	nti occ	orre in	terpell	are II N	ıs. uπı	cio vei	naite.					

Cilindrata	CC	Pressione	Po	rtata di un eleme I/min	nto	
Cm ³ /giro	Codice	max bar	MIN	CONSIGLIATA	MAX	
0,9	16	220	1	2	6	
1,2	17	220	1,5	3	7	
1,7	18	220	2	4	9	
2,2	20	220	2,5	5	13	
2,6	21	220	3	6	15,5	
3,2	23	220	3,5	7,5	18	
3,8	25	220	4	8,5	21	
4,3	27	220	4,5	9,5	23	
4,9	29	220	5,5	11	27	
5,9	31	220	6,5	13	30	
6,5	32	220	7,5	14	32	
7,8	34	210	8,5	16	35,5	
9,8	36	200	11	20	41	

Tabella: 1

Cm ³ /giro	Α
0,9	41,5
1,2	42,5
1,7	44
2,2	46
2,6	48
3,2	50
3,8	52
4,3	54
4,9	57
5,9	60,5
6,5	63
7,8	67
9,8	76

Cm ³ /giro	СМ	M	D
4	41	47	1/2" BSP
6	43	50	1/2" BSP
9	45	54	1/2" BSP
11	47	58	1/2" BSP
14	49	64	3/4" BSP
17	51	68	3/4" BSP
19	53	72	3/4" BSP
22	55	78	3/4" BSP
26	57	82	1" BSP
30	59	90	1" BSP
34	61	97	1" BSP
40	63	106	1" BSP

 Tabella: 3
 In questa tabella sono indicati il numero di ingressi del divisore in funzione del numero di elementi

Numero di elementi	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Numero di ingressi	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

Divisore di Flusso con *valvola singola di rifasamento* comune a tutti gl elementi + MOTORE "Gruppo 2"

DRENAGGIO ESTERNO PREDISPOSIZIONE STANDARD DI FABBRICA	DRENAGGIO INTERNO
Collegare il foro drenaggio (T) al serbatoio	Per predisporre il divisore al drenaggio interno eseguire le seguenti operazioni: 1. Smontare il grano G 1/8 alloggiato all'interno del foro di drenaggio 2. Con un tappo da ½ G tappare il foro di drenaggio (T)
OUT OUT TOUT OIL	OUT OUT TOUT

Nella tabella 1 è indicato il campo di funzionamento dei singoli elementi divisore.

Più è alta la portata (q) di alimentazione, maggiore è la precisione di divisione del flusso, ma di contro si hanno perdite di carico e rumorosità più elevata. Pertanto consigliamo di alimentare gli elementi con portate uguali o di poco superiori a quelle indicate nella colonna "CONSIGLIATA".

Ricordarsi di verificare le portate anche in fase di riunificazione del flusso.

Le pressioni indicate sono da considerarsi massime di funzionamento, il divisore può supportare picchi di pressione superiori del 20%.

130,5 = 53,5 + 37 + 40

Come calcolare le misure "Li" e "Lt" del divisore:

Lt = Li + 21,5 **21,5** = 9,5 + 12

ESEMPIO: Per ottenere le misure Li e Lt di un divisore a 2 elementi+ 1 motore (n=2), del tipo RV-1H / 3,8 x 2+ 1 MOTORE 11

Interasse fori di fissaggio Li = $[(2-1) \times 33] + 130,5+47 + 52 + 52 = 314,5 \text{ mm}$

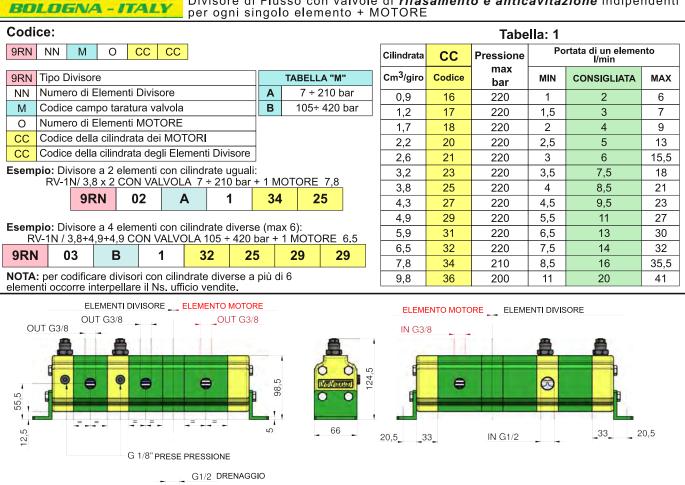
Lunghezza di ingombro totale Lt = 314,5 + 21,5 = 336

Nella **tabella 3** sono indicati il numero di ingressi in funzione del numero di elementi Gli ingressi del divisore sono tutti comunicanti ed è possibile utilizzarne anche uno solo tappando gli altri. Consigliamo di sfruttare almeno **1** ingresso ogni **40 I/min** di portata

Per ottenere errori di divisione **inferiori al 3**% non si devono avere differenze di pressioni tra gli elementi superiori a **30 bar.** Per ottenere precisioni elevate è importante anche il rispetto dei seguenti parametri:

- Temperatura ambiente: -10°c ÷ +60°c Temperatura olio: +30°c ÷ +60°c

- Olio idraulico a base minerale hlp, hv (din 51524) Viscosità olio 20 ÷ 40 cSt



RIFERIMENTO:

RN101

Divisore di Flusso con valvole di rifasamento e anticavitazione indipendenti

Cm ³ /giro	A-M
0,9	41,5
1,2	42,5
1,7	44
2,2	46
2,6	48
3,2	50
3,8	52
4,3	54
4,9	57
5,9	60,5
6,5	63
7,8	67
9,8	76

15

Α

Li Lt

__33_

M

33

53,5

Tabella: 3 in questa tabella sono indicati il numero di ingressi in funzione del numero di elementi

6 Ø 5

Numero di elementi	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Numero di ingressi	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

Divisore di Flusso con valvole di *rifasamento e anticavitazione* indipendenti per ogni singolo elemento + MOTORE

DRENAGGIO ESTERNO PREDISPOSIZIONE STANDARD DI FABBRICA Per il corretto funzionamento il divisore, va installato sottobattente. Il tubo di drenaggio deve pescare al di sotto del livello dell'olio e non deve aspirare aria. Per predisporre il divisore al drenaggio interno tappare il foro di drenaggio (T) da ½ G Nota: con questa configurazione la funzione delle valvole anticavitazione viene annullata.

Nella tabella 1 è indicato il campo di funzionamento dei singoli elementi divisore.

Più è alta la portata (q) di alimentazione, maggiore è la precisione di divisione del flusso, ma di contro si hanno perdite di carico e rumorosità più elevata. Pertanto consigliamo di alimentare gli elementi con portate uguali o di poco superiori a quelle indicate nella colonna "CONSIGLIATA".

Ricordarsi di verificare le portate anche in fase di riunificazione del flusso.

Le pressioni indicate sono da considerarsi massime di funzionamento, il divisore può supportare picchi di pressione superiori del 20%.

Come calcolare le misure "Li" e "Lt" del divisore:

Dalla **tabella 2** ricavare le misura "Li" per i divisori fino a 16 elementi con cilindrate uguali; per i divisori con elementi diversi o con più di 16 elementi le misura "Li" e "Lt" si calcolano con le seguenti formule:

Li =
$$[(n-1) \times 33] + 107 + (A1 + A2 + A3 +)$$
 107 = 53,5 + 53,5

n = Numero di elementi del divisore

A1... An = altezze elementi divisore

$$Lt = Li + 19$$
 $19 = 9.5 + 9.5$

ESEMPIO: Per ottenere le misure Li e Lt di un divisore a 2 elementi+motore (n=3), del tipo RV-1N / 3,8 x 2+ 1 MOTORE 7,8

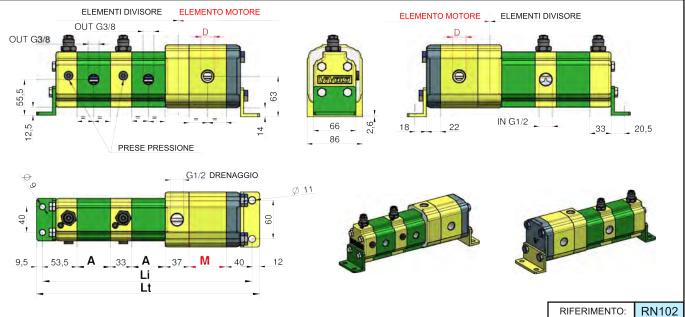
Interasse fori di fissaggio Li = $[(3-1) \times 33] + 107 + 52 + 52 + 67 = 344 \text{ mm}$

Lunghezza di ingombro totale Lt = 344 + 19 = 363

Nella **tabella 3** sono indicati il numero di ingressi in funzione del numero di elementi Gli ingressi del divisore sono tutti comunicanti ed è possibile utilizzarne anche uno solo tappando gli altri. Consigliamo di sfruttare almeno **1** ingresso ogni **40** I/min di portata

Per ottenere errori di divisione **inferiori al 3%** non si devono avere differenze di pressioni tra gli elementi superiori a **30 bar.** Per ottenere precisioni elevate è importante anche il rispetto dei seguenti parametri:

- Temperatura ambiente: -10°c ÷ +60°c Temperatura olio: +30°c ÷ +60°c


- Olio idraulico a base minerale hlp, hv (din 51524) Viscosità olio 20 ÷ 40 cSt

RV-1N

Divisore di Flusso con valvole di *rifasamento e anticavitazione* indipendenti per ogni singolo elemento + MOTORE "Gruppo 2"

					or ogr		90.	0 010111	01110 1	NO TORL	0.49	P			
Codic	e:											Tabe	lla: 1		
9RN NN M O CC CC									Cilindrata	CC	Pressione	Portata di un elemento I/min			
9RN T	Γipo Diviso	re						TABELLA	\ "M"	Cm ³ /giro	Codice	max bar	MIN	CONSIGLIATA	MAX
NN N	Numero di	Elemen	ti Divis	ore			Α	7 ÷ 2	10 bar	0.9	16	220	1	2	6
M C	Codice can	npo tara	itura va	ılvola			В	105÷ 4	120 bar	1,2	17	220	1,5	3	7
0 1	Numero di	Elemen	ti MOT	ORE						1,7	18	220	2	4	9
CM Codice della cilindrata dei MOTORI										2,2	20	220	2,5	5	13
CC Codice della cilindrata degli Elementi Divisore										2,6	21	220	3	6	15,5
Esempi	io: Divisor									3,2	23	220	3,5	7,5	18
	RV-1N/ 7			LVOLA	7 ÷ 210) bar +				3,8	25	220	4	8,5	21
	9F	RN	02	Α	1		51	34		4,3	27	220	4,5	9,5	23
	. 5						,	0)		4,9	29	220	5,5	11	27
	i o: Divisor /-1N / 3.8+								RF 14	5,9	31	220	6,5	13	30
RV-1N / 3,8+4,9+4,9 CON VALVOLA 105 ÷ 420 bar + 1 MOTORE 14 9RN 03 B 1 49 25 29 29								29	6,5	32	220	7,5	14	32	
9RN 03 B 1 49 25 29 29								29	7,8	34	210	8,5	16	35,5	
NOTA: per codificare divisori con cilindrate diverse a più di 6 elementi occorre interpellare il Ns. ufficio vendite.										9,8	36	200	11	20	41
SISTINCTIC	ELEMENTI DIVISORE ELEMENTO MOTORE														

Cm ³ /giro	Α
0,9	41,5
1,2	42,5
1,7	44
2,2	46
2,6	48
3,2	50
3,8	52
4,3	54
4,9	57
5,9	60,5
6,5	63
7,8	67
9,8	76

Cm ³ /giro	СМ	M	D				
4	41	47	1/2" BSP				
6	43	50	1/2" BSP				
9	45	54	1/2" BSP				
11	47	58	1/2" BSP				
14	49	64	3/4" BSP				
17	51	68	3/4" BSP				
19	53	72	3/4" BSP				
22	55	78	3/4" BSP				
26	57	82	1" BSP				
30	59	90	1" BSP				
34	61	97	1" BSP				
40	63	106	1" BSP				

 Tabella: 3
 In questa tabella sono indicati il numero di ingressi del divisore in funzione del numero di elementi

Numero di elementi	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Numero di ingressi	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

Divisore di Flusso con valvole di *rifasamento e anticavitazione* indipendenti per ogni singolo elemento + MOTORE "Gruppo 2"

DRENAGGIO ESTERNO PREDISPOSIZIONE STANDARD DI FABBRICA	DRENAGGIO INTERNO
Per il corretto funzionamento il divisore, va installato sottobattente. Il tubo di drenaggio deve pescare al di sotto del livello dell'olio e non deve aspirare aria.	Per predisporre il divisore al drenaggio interno tappare il foro di drenaggio (T) da ½ G
ilvello dell'ollo e fiori deve aspirare ana.	Nota: con questa configurazione la funzione delle valvole anticavitazione viene annullata.
OUT 1 OUT 2 OUT	OUT 1 OUT 2 OUT
oil	

Nella tabella 1 è indicato il campo di funzionamento dei singoli elementi divisore.

Più è alta la portata (q) di alimentazione, maggiore è la precisione di divisione del flusso, ma di contro si hanno perdite di carico e rumorosità più elevata. Pertanto consigliamo di alimentare gli elementi con portate uguali o di poco superiori a quelle indicate nella colonna "CONSIGLIATA".

Ricordarsi di verificare le portate anche in fase di riunificazione del flusso.

Le pressioni indicate sono da considerarsi massime di funzionamento, il divisore può supportare picchi di pressione superiori del 20%.

Come calcolare le misure "Li" e "Lt" del divisore:

ESEMPIO: Per ottenere le misure Li e Lt di un divisore a 2 elementi+ 1 motore (n=2), del tipo RV-1N / 3,8 x 2+ 1 MOTORE 11

Interasse fori di fissaggio Li = $[(2-1) \times 33] + 130,5+47 + 52 + 52 = 314,5 \text{ mm}$

Lunghezza di ingombro totale Lt = 314,5 + 21,5 = 336

Nella **tabella 3** sono indicati il numero di ingressi in funzione del numero di elementi Gli ingressi del divisore sono tutti comunicanti ed è possibile utilizzarne anche uno solo tappando gli altri. Consigliamo di sfruttare almeno **1** ingresso ogni **40** I/min di portata

Per ottenere errori di divisione **inferiori al 3**% non si devono avere differenze di pressioni tra gli elementi superiori a **30 bar.** Per ottenere precisioni elevate è importante anche il rispetto dei seguenti parametri:

- Temperatura ambiente: -10°c ÷ +60°c Temperatura olio: +30°c ÷ +60°c

- Olio idraulico a base minerale hlp, hv (din 51524) Viscosità olio 20 ÷ 40 cSt

VIVOIL OLEODINAMICA VIVOLO s.r.l. Società a Socio Unico VIA L. GINZBURG, 2-4 - 40054 CENTO DI BUDRIO (BO) - ITALY - TEL. +39 - 051.803689 FAX +39 - 051.800061 PARTITA IVA E COD. FISCALE 03542620376 C.C.I.A.A. 299009 - ISCR. TRIB.: BO 43434 WWW.VIVOIL.COM - VIVOIL@VIVOIL.COM

